
Finding Hierarchical and Overlapping Dense Subgraphs
using Nucleus Decompositions

Ahmet Erdem Sarıyüce†
∗

, C. Seshadhri‡, Ali Pınar‡, Ümit V. Çatalyürek†
sariyuce.1@osu.edu, scomand@sandia.gov, apinar@sandia.gov, umit@bmi.osu.edu

†The Ohio State University, Columbus, OH, USA
‡Sandia National Labs, Livermore, CA, USA

ABSTRACT
Finding dense substructures in a graph is a fundamental
graph mining operation, with applications in bioinformatics,
social networks, and visualization to name a few. Yet most
standard formulations of this problem (like clique, quasi-
clique, k-densest subgraph) are NP-hard. Furthermore, the
goal is rarely to find the “true optimum”, but to identify
many (if not all) dense substructures, understand their dis-
tribution in the graph, and ideally determine a hierarchical
structure among them. Current dense subgraph finding al-
gorithms usually optimize some objective, and only find a
few such subgraphs without providing any hierarchy. It is
also not clear how to account for overlaps in dense substruc-
tures.

We define the nucleus decomposition of a graph, which
represents the graph as a forest of nuclei. Each nucleus is a
subgraph where smaller cliques are present in many larger
cliques. The forest of nuclei is a hierarchy by containment,
where the edge density increases as we proceed towards leaf
nuclei. Sibling nuclei can have limited intersections, which
allows for discovery of overlapping dense subgraphs. With
the right parameters, the nuclear decomposition generalizes
the classic notions of k-cores and k-trusses.

We give provable efficient algorithms for nuclear decompo-
sitions, and empirically evaluate their behavior in a variety
of real graphs. The tree of nuclei consistently gives a global,
hierarchical snapshot of dense substructures, and outputs
dense subgraphs of higher quality than other state-of-the-
art solutions. Our algorithm can process graphs with tens
of millions of edges in less than an hour.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Com-
putations on Discrete Structures; G.2.2 [Graph Theory]:
Graph Algorithms

∗Work done while the author was interning at Sandia Na-
tional Labs, Livermore.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

General Terms
Algorithms

Keywords
k-core, k-truss, decomposition, hierarchy, overlapping sub-
graphs, dense subgraph discovery

1. INTRODUCTION
Graphs are widely used to model relationships in a wide

variety of domains such as sociology, bioinformatics, infras-
tructure, the WWW, to name a few. One of the key ob-
servations is that while real-world graphs are often globally
sparse, they are locally dense. In other words, the average
degree is often quite small (say at most 10 in a million vertex
graph), but vertex neighborhoods are often dense. The clas-
sic notions of transitivity [47] and clustering coefficients [48]
measure these densities, and are high for many real-world
graphs [35, 40].

Finding dense subgraphs is a critical aspect of graph min-
ing [30]. It has been used for finding communities and
spam link farms in web graphs [29, 20, 13], graph visualiza-
tion [2], real-time story identification [4], DNA motif detec-
tion in biological networks [18], finding correlated genes [49],
epilepsy prediction [26], finding price value motifs in finan-
cial data [14], graph compression [8], distance query index-
ing [27], and increasing the throughput of social networking
site servers [21]. This is closely related to the classic socio-
logical notion of group cohesion [6, 17]. There are tangential
connections to classic community detection, but the objec-
tives are significantly different. Community definitions in-
volve some relation of inner versus outer connections, while
dense subgraphs purely focus on internal cohesion.

1.1 The challenges of dense subgraphs
Our input is a graph G = (V,E). For vertex set S, we

use E(S) to denote the set of edges internal to S. The edge

density of S is ρ(S) = |E(S)|/
(|S|

2

)
, the fraction of edges

in S with respect to the total possible. The aim is to find
a set S with high density subject to some size constraint.
Typically, we are looking for large sets of high density.

In general, one can define numerous formulations that cap-
ture the main problem. The maximum clique problem is
finding the largest S where ρ(S) = 1. Finding the dens-
est S of size at least k is the k-densest subgraph problem.
Quasi-cliques, as defined recently by Tsourakakis et al. [43],
are sets that are almost cliques, up to some fixed “defect.”
Unfortunately, most formulations of finding dense subgraphs

SAND2014-19934R

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

fr
eq

ue
nc

y

density

Figure 1: Density histogram of facebook (3, 4)-nuclei. 145
nuclei have density of at least 0.8 and 359 nuclei are with
the density of more than 0.25.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000

ed
ge

 d
en

si
ty

number of vertices

k-3,4
LocalSearchOQC

GreedyOQC

Figure 2: Size vs. density plot for facebook (3, 4)-nuclei. 50
nuclei are larger than 30 vertices with the density of at least
0.8. There are also 138 nuclei larger than 100 vertices with
density of at last 0.25.

are NP-hard, even to approximate [24, 16, 28].
For graph analysis, one rarely looks for just a single (or the

optimal, for whatever notion) dense subgraph. We want to
find many dense subgraphs and understand the relationships
among them. Ideally, we would like to see if they nest within
each other, if the dense subgraphs are concentrated in some
region, and if they occur at various scales of size and density.
Our paper is motivated by the following questions.
• How do we attain a global, hierarchical representation

of many dense subgraphs in a real-world graph?
• Can we define an efficiently solvable objective that di-

rectly provides many dense subgraphs? We wish to avoid
heuristics, as they can be difficult to predict formally.

1.2 Our results
Nucleus decompositions: Our primary theoretical con-

tribution is the notion of of nuclei in a graph. Roughly
speaking, an (r, s)-nucleus, for fixed (small) positive integers
r < s, is a maximal subgraph where every r-clique is part of
many s-cliques. (The real definition is more technical and in-
volves some connectivity properties.) Moreover, nuclei that
do not contain one another cannot share an r-clique. This

Figure 3: (3, 4)-nuclei forest for facebook. Legends for den-
sities and sizes are shown at the top. Long chain paths are
contracted to single edges. In the uncontracted forest, there
are 47 leaves and 403 nuclei. Branching depicts the differ-
ent regions in the graph, 13 connected components exist in
the top level. Sibling nuclei have limited overlaps up to 7
vertices.

is inspired by and is a generalization of the classic notion of
k-cores, and also k-trusses (or triangle cores).

We show that the (r, s)-nuclei (for any r < s) form a
hierarchical decomposition of a graph. The nuclei are pro-
gressively denser as we go towards the leaves in the decom-
position. We provide an exact, efficient algorithm that finds
all the nuclei and builds the hierarchical decomposition. In
practice, we observe that (3, 4)-nuclei provide the most in-
teresting decomposition. We find the (3, 4)-nuclei for a large
variety of more than 20 graphs. Our algorithm is feasible in
practice, and we are able to process a 39 million edge graph
is less than an hour (using commodity hardware).

Dense subgraphs from (3, 4)-nuclei: The (3, 4)-nuclei
provide a large set of dense subgraphs for range of densities
and sizes. For example, there are 403 (3, 4)-nuclei (of size at
least 10 vertices) in a facebook network of 88K edges. We
show the density histogram of these nuclei in Fig. 1, plotting
the number of nuclei with a given density. Observe that
we get numerous dense subgraphs, and many with density
fairly close to 1. In Fig. 2, we present a scatter plot of vertex
size vs density of the (3, 4)-nuclei. Observe that we obtain
dense subgraphs over a wide range of sizes. For comparison,
we also plot the output of recent dense subgraph algorithms
from Tsourakakis et al [43]. (These are arguably the state-of-
the-art. More details in next section.) Observe that (3, 4)-
nuclei give dense subgraphs of comparable quality. In some
cases, the output of [43] is very close to a (3, 4)-nucleus.

Representing a graph as forest of (3, 4)-nuclei: We
build the forest of (3, 4)-nuclei for all graphs experimented
on. An example output is that of Fig. 3, the forest of (3, 4)-
nuclei for the facebook network. Each node of the forest is
a (3, 4)-nucleus, and tree edges indicate containment. More

generally, an ancestor nucleus contains all descendant nu-
clei. By the properties of (3, 4)-nuclei, any two incomparable
nodes do not share a triangle. So the branching in the forest
represents different regions of the graph. (All nuclei of less
than 10 vertices is omitted. For presentation, we contract
long chain paths in the tree to single edges, so the forest has
less than 403 nodes.)

In the nuclei figures, densities are color-coded, with hot-
ter colors indicating higher density. The log of sizes are
coded by shape (circles comprise between 10 and 100 ver-
tices, hexagons between 100 and 1000 vertices, etc.) For
a fixed shape, relative size corresponds to relative size in
vertices. We immediately see the hierarachy of dense struc-
tures. Observe the colors becoming hotter as we go towards
to leaves, which are mostly red (density > 0.8). We see
numerous hexagons and large circles of color between light
blue to green. These indicate the larger parent subgraphs of
moderate density (actually density of say 0.25 is fairly high
for a subgraph having many hundreds of vertices).

The branching is also significant, and we can group to-
gether the dense subgraphs according to the hierarchy. We
observe such branching in all our experiments, and show
more such results later in the paper. The (3, 4)-nuclei pro-
vide a simple, hierarchical visualization of dense substruc-
tures. They are well-defined and their exact computation is
algorithmically feasible and practical.

We also want to emphasize the overlap between sibling
nuclei. While sibling nuclei cannot share triangles, but they
can share edges. We observe roughly 20 pairs of (3, 4)-nuclei
having intersections of 4-6 vertices. For larger graphs, we
observe many more pairs of intersecting nuclei (with larger
intersections).

The rest of the paper is organized as follows: §2 summa-
rizes the related work, §3 introduces the main definitions and
the lemma about the nucleus decomposition, §4 gives the al-
gorithm to generate a nucleus decomposition and provides a
complexity analysis, §5 contains the results of extensive ex-
periments we have, and §6 concludes the paper by discussing
the future directions.

2. PREVIOUS WORK
Dense subgraph algorithms: As discussed earlier, most

formulations of the densest subgraph problem are NP-hard.
Some variants such as maximum average degree[22, 19] and
the recently defined triangle-densest subgraph [44] are poly-
nomial time solvable. Linear time approximation algorithms
have been provided by Asashiro et al. [5], Charikar [9], and
Tsourakakis [44]. There are numerous recent practical al-
gorithm for various such objectives: Andersen and Chel-
lapilla’s use of cores for dense subgraphs [3], Rossi et al.’s
surprising heuristic for clique [34], Tsourakakis et al.’s notion
of quasi-cliques [43]. These algorithms are extremely effi-
cient and produce excellent output. For comparison’s sake,
we consider Tsourakakis et al. [43] as the state-of-the-art,
which was compared with previous core-based heuristics and
is much superior to prior art. Indeed, their algorithms are
elegant, extremely efficient, and provide high quality out-
put (and much faster than ours. More discussion in §5.4).
These methods are tailored to finding one (or a few) dense
subgraphs, and do not give a global/hierarchical view of the
structure of dense subgraphs. We believe it would be worth-
while to relate their methods with our notion of nuclei, to
design even better algorithms.

k-cores and k-trusses: The concepts of k-cores and k-
trusses form the inspiration for our work. A k-core is a
maximal subgraph where each vertex has minimum degree
k, while a k-truss is a subgraph where each edge partici-
pates in at least k triangles. The first definition of k-cores
was given by Erdős and Hajnal [15]. It has been rediscovered
numerous times in the context of graph orientations and is
alternately called the coloring number and degeneracy [31,
38]. The first linear time algorithm for computing k-cores
was given by Matula and Beck [32]. The earliest applications
of cores to social networks was given by Seidman [38], and it
is now a standard tool in the analysis of massive networks.
The notions of k-truss or triangle-cores were independently
proposed by by Cohen [11], Zhang and Parthasarathy [50],
and Zhao and Tung [51] for finding clusters and for network
visualization. They all provide efficient algorithms for these
decompositions, and Cohen [11] and Wang and Cheng [45]
explicitly focus on massive scale. In [46], Wang et al. pro-
posed DN-graph, a similar concept to k-truss, where each
edge should be involved in k triangles, and adding or remov-
ing a vertex from DN-graph breaks this constraint. Apart
from the k-core and k-truss definitions, k-plex and k-club
subgraph definitions have drawn a lot of interest as well. In
a k-plex, each vertex is missing no more than k− 1 edges to
its neighbors [39]. It can be seen as a complementary k-core
definition. In a k-club, the shortest path from any vertex
to other vertex is not more than k [33]. All these meth-
ods find subgraphs of moderate density, but give a global
decomposition to visualize a graph.

3. NUCLEUS DECOMPOSITION
Our main theoretical contribution is the notion of nucleus

decompositions. We have an undirected, simple graph G.
We use Kr to denote an r-clique and start with some tech-
nical definitions.

Definition 1. Let r < s be positive integers and S be a
set of Kss in G.
• Kr(S) the set of Krs contained in some S ∈ S.
• The number of S ∈ S containing R ∈ Kr(S) is the
S-degree of that Kr.
• Two Krs R,R′ are S-connected if there exists a se-

quence R = R1, R2, . . . , Rk = R′ in Kr(S) such that for
each i, some S ∈ S contains Ri ∪Ri+1.

These definitions are simple generalizations of the stan-
dard notion of the vertex degree and connectedness. Indeed,
setting r = 1 and s = 2 (so S is a set of edges) yields exactly
that. Our main definition follows.

Definition 2. Let k and r < s be positive integers. A
k-(r, s)-nucleus is a maximal union S of Kss such that:
• The S-degree of any R ∈ Kr(S) is at least k.
• Any R,R′ ∈ Kr(S) are S-connected.

We simply refer to (r, s)-nuclei when k is unspecified. Note
that we treat nuclei as a union of cliques, though eventually,
we look at this as a subgraph. Our theoretical treatment is
more convenient in the former setting, and hence we stick
with this definition. In our applications, we simply look at
nuclei as subgraphs.

Intuitively, a nucleus is a tightly connected cluster of cliques.
For large k, we expect the cliques in S to intersect heavily,

2-(2,3)
nucleus

2-(2,4)
nucleus

Figure 4: Having same number of vertices, 2-(2, 4) nucleus
is denser than 2-(2, 3).

Two 1-(3,4) nuclei
intersecting at an edge

Only one
1-(3,4) nucleus

Figure 5: The left figure shows two (3, 4)-nuclei overlapping
at an edge. The right figure has only one (3, 4)-nucleus

creating a dense subgraph. For a fixed k, r and same num-
ber of vertices, the density of the nuclei increases, as we
increase s. Consider the example of Fig. 4, where there is a
2-(2, 3)-nucleus and a 2-(2, 4)-nucleus on the same number
of vertices. Since in the latter case, we need every edge to
participate in at least 2 K4s, the resulting density is much
higher.

As stated earlier, our definitions are directly inspired by
k-cores and k-trusses. Set r = 1, s = 2. A k-(1, 2)-nucleus
is a maximal (induced) connected subgraph with minimum
vertex degree k. This is exactly a k-core. Setting r = 2, s =
3 gives maximal subgraphs where every edge participates in
at least k triangles, and edges are triangle-connected. This
is essentially the definition of k-trusses or triangle-cores.

So far we only discussed the degree constraint of nuclei.
Note that a nucleus is not just connected in the usual (edge)
sense, but requires the stronger property of being S-connected.
The standard definitions of trusses or triangle-cores omit the
triangle-connectedness. For us, this is critical. Two cliques
of distinct (r, s)-nuclei can intersect. For example, when
r > 2, nuclei can have edge overlaps. This allows for finding
even denser subgraphs, as Fig. 5 shows. In the left, cores,
trusses, etc. pick up the entire graph. But there are actually
2 different 1-(3, 4)-nuclei (each K4) intersecting at an edge.
The (3, 4)-nuclei are denser than the graph itself. Note that
any edge disjoint decomposition would not find two dense
subgraphs.

Critically, the set of (r, s)-nuclei form a laminar family. A
laminar family is a set system where all pairwise intersec-
tions are trivial (either empty or contains one of the sets).

Lemma 1. The family of (r, s)-nuclei form a laminar fam-
ily.

Proof. Consider k-(r, s)-nucleus S and k′-(r, s)-nucleus
S ′, where k ≤ k′. Suppose they had a non-empty intersec-

tion, so some Ks S is contained in both S and S ′. Observe
that Krs in Kr(S) are connected to Krs in Kr(S ′). Fur-
thermore, the (S ∪S ′)-degree of member of Kr(S ∪S ′) is at
least k. Hence S ∪ S ′ satisfies the two conditions of being
a nucleus, except maximality. By S is a k-(r, s)-nucleus, so
S ∪ S ′ = S. So any non-empty intersection is trivial.

Consider two nuclei that not ancestor-descendant. By the
above lemma, these two two nuclei (considered as subgraphs
of G) cannot share a Ks. Actually, the argument above
proves that they cannot even share a Kr. This is the key
disjointness property of nuclei.

Every laminar family is basically a hierarchical set sys-
tem. Alternately, every laminar family can be represented
by a forest of containment. For every nucleus S, any other
nucleus intersecting S is either contained in S or contains
S. Furthermore, all these sets are nested in each other. It
makes sense to talk of the smallest sized nucleus containing
S. This leads to the main construct we use to represent
nuclei.

Definition 3. Fix r < s. Define the forest of (r, s)-
nuclei as follows. There is a node for each (r, s) nucleus.
The parent of every nucleus is the smallest (by cardinality)
other nucleus containing it.

In our figures, we will only show the internal nodes of out
degree at least 2, and contract any path of out degree 1
vertices into a single path. This preserves all the branching
of the forest.

4. GENERATING NUCLEUS DECOMPOSI-
TIONS

Our primary algorithmic goal is to construct the tree of
nuclei. The algorithm is a direct adaptation of the classic
Matula-Beck result of getting k-cores in linear time [32].
There are numerous technicalities involved in generalizing
the proof. Intuitively, we do the following. Construct a
graph H where the nodes are all Krs of G and there is an
edge connecting two Krs if they are contained in a single Ks

of G. We then perform a core decomposition onH. Actually,
this does not work. Edges of G (obviously) contain exactly
2 vertices of G, and the procedure above exactly produces
nuclei for r = 1, s = 2. In general, a Ks contains

(
s
r

)
Krs,

and the graph analogy above is incorrect. At some level, we
are performing a hypergraph version of Matula-Beck. The
proofs therefore need to be adapted to this setting.

Analogous to k-cores, the main procedure set-k assigns
a number, denoted by κ(·), to each Kr in G.

It is convenient to denote the set ofKrs inG byR1, R2, . . .,
where Ri is the ith processed Kr in set-k. We will refer to
this index as time. When we say “at time t”, we mean at the
beginning of the iteration where Rt is processed.

Claim 1. The sequence {κ(Ri)} is monotonically non-
decreasing.

Proof. This holds because the loop goesR in non-decreasing
order of d(R) and Step 11 ensures that no new value of δ(·)
decreases below the current k(R).

• Because of Claim 1, we can define transition time ti to
be the first time when the k-value becomes i. Formally, ti
is the unique index such that k(Rti) = i and k(Rti−1) < i.

Algorithm 1: set-k(G, r, s)

1 Enumerate all Krs and Kss in G(V,E);
2 For every Kr R, initialize δ(R) to be the number of Ks

containing R;
3 Mark every Kr as unprocessed;
4 for each unprocessed Kr R with minimum δ(R) do
5 κ(R) = δ(R);
6 Find set S of Kss containing R;
7 for each S ∈ S do
8 if any Kr R

′ ⊂ S is processed then
9 Continue;

10 for each Kr R
′ ⊂ S, R′ 6= R do

11 if δ(R′) > δ(R) then
12 δ(R′) = δ(R′)− 1 ;

13 Mark R as processed;

14 return array k(·) ;

• We say Ks S is unprocessed at time t if all R ∈ Kr(S)
are unprocessed at time t. The set of Kss is denoted by St.
• The supergraph Gt has node set Kr(St), and R,R′ ∈

Kr(St) are connected by a link if R ∪ R′ is contained in
some Ks of St. Links are associated with elements of St
(and there may be multiple links between R and R′).

We prove an auxiliary claim relating the δ(·) values to St.

Claim 2. At time t, for any unprocessed Kr R, δ(R) is
at least the St-degree of R. If t = tk (for some k), then δ(R)
is exactly the St-degree of R.

Proof. Pick unprocessed R′. The value of δ(R) is ini-
tially the number of Kss containing R′. It is decremented
only in Step 12, which happens only when a processed Ks

containing R′ is found. (Sometimes, the decrement will still
not happen, because of Step 11.) Hence, the value of δ(R′)
at time t is at least the number of unprocessed Kss contain-
ing R′.

Suppose t = tk. For any preceding t̂ < t, the current
κ(·) value is always at most k. For unprocessed (at time t)
R, δ(R) > k. Hence the decrement of Step 12 will always
happen, and δ(R) is exactly the St-degree of R.

Claim 3. Every k-(r, s)-nucleus is contained in Stk .

Proof. Consider k-(r, s)-nucleus S. Take the first R ∈
Kr(S) that is processed. At this time (say t), no S ∈ S can
be processed. Hence, S ⊆ St. By Claim 2, d(R) is at least
the St-degree of R, which is at least the S-degree of R. The
latter is at least k, since S is a k-(r, s)-nucleus. By definition
of tk, t ≥ tk and hence St ⊆ Stk . Thus, S ⊆ Stk .

The main lemma shows that the output of set-k essen-
tially tells us the nuclei.

Lemma 2. The k-(r, s)-nuclei are exactly the links (which
are Kss) of connected components of Gtk .

Proof. Consider k-(r, s)-nucleus S. By Claim 3, it is
contained in Stk . By the nucleus definition, S is connected
(as links) in Gtk . Let S ′ be the (set of links) connected
component of Gtk containing S. By Claim 2, at time tk, for
any R ∈ Kr(S ′), δ(R) is exactly the Stk -degree of R. Since
S ′ is a connected component of Gtk , the Stk -degree is the
S ′-degree, which in turn is at least k. In other words, S ′
satisfies both conditions of being a k-(r, s)-nucleus, except
maximality. By maximality of S, S = S ′.

Building the forest of nuclei: From Lem. 2, it is fairly
straightforward to get all the nuclei. First run set-k to get
the processing times and the k(·) values. We can then get all
tk times as well. Suppose for any Kr in G, we can access all
the Kss containing it. Then, it is routine to traverse Gtk to
get the links of connected components. To avoid traversing
the same component repeatedly, we produce nuclei in reverse
order of k. In other words, suppose all connected compo-
nents of Gtk+1 have been determined. For Gtk , it suffices to
determine the connected components involving nodes pro-
cessed in time [tk, tk+1). Any time a traversal encounters a
node in Gtk+1 , we need not traverse further. This is because
all other connected nodes of Gtk+1 are already known from
previous traversals. We do not get into the data structure
details here, but it suffices to visit all nodes and links of G0
exactly once.

4.1 Bounding the complexity
There are two options of implementing this algorithm.

The first is faster, but has forbiddingly large space. The
latter is slower, but uses less space. In practice, we imple-
ment the latter algorithm. We use ctr(v) for the number of
Krs containing v and ctr(G) for the total number of Krs in
G. We denote by RTr(G) the running time of an arbitrary
procedure that enumerates all Krs in G.

Theorem 1. It is possible to build the forest of nuclei in
O(RTr(G) +RTs(G)) time with O(ctr(G) + cts(G)) space.

Proof. This is the obvious implementation. The very
first step of set-k requires the clique enumeration. Suppose
we store the global supergraph G = G0. This has a node for
every Kr in G and a link for every Ks in G. The storage is
O(ctr(S) + cts(G)). From this point onwards, all remaining
operations are linear in the storage. This is by the analysis
of the standard core decomposition algorithm of Matula and
Beck [32]. Every time we process a Kr, we can delete it and
all incident links from G. Every link is touched at most a
constant number of times during the entire running on set-

k. As explained earlier, we can get all the nuclei by a single
traversal of G.

Theorem 2. It is possible to build the forest of nuclei in
O(RTr(G) +

∑
v ctr(v)d(v)s−r) time with O(ctr(G)) space.

Proof. Instead of explicitly building G, we only build
adjacency lists when required. The storage is now only
O(ctr(G)). In other words, given a Kr R, we find all Kss
containing R only when R is processed/traversed. Each R
is processed or traversed at most once in set-k and the for-
est building. Suppose R has vertices v1, v2, . . . , vr. We can
find all Kss containing R by looking at all (s− r)-tuples in
each of the neighborhoods of vi. (Indeed, it suffices to look
at just one such neighborhood.) This takes time at most∑
R

∑
v∈R d(v)s−r =

∑
v

∑
R3v d(v)s−r =

∑
v ctr(v)d(v)s−r.

Let us understand these running times. When r < s ≤ 3,
it clearly benefits to go with Thm. 1. Triangle enumeration
is a well-studied problem and there exist numerous opti-
mized, parallel solutions for the problem. In general, the
classic triangle enumeration of Chiba and Nishizeki takes
O(m3/2) [10] and is much better in practice [12, 37, 42].
This completely bounds the time and space complexities.

For our best results, we build the (3, 4)-nuclei, and the
number of K4s is too large to store. We go with Thm. 2.

|V| |E| Description
∑

v c3(v)d(v) (3, 4) time [43]
Density (size)

(3,4)-nucleus
Density (size)

dolphins 62 159 Biological 2.2K < 1 0.68(8) 0.71(8)
polbooks 105 441 US Politics Books 23.8K < 1 0.67(13) 0.62(13)
adjnoun 112 425 Adj. and Nouns 17.6K < 1 0.60(15) 0.22(32)
football 115 613 World Soccer 98 26.3K < 1 0.89(10) 0.89(10)
jazz 198 2.74K Musicians 2.3M < 1 1.00(30) 1.00(30)
uelegans n. 297 2.34K Biological 418K < 1 0.61(21) 0.91(10)
celegans m. 453 2.04K Biological 565K < 1 0.67(17) 0.64(18)
email 1.13K 5.45K Email 1.2M < 1 1.00(12) 1.00(12)
facebook 4.03K 88.23K Friendship 712M 93 0.83(54) 0.98(109)
protein inter. 9.67K 37.08K Protein Inter. 35M < 1 1.00(11) 1.00(11)
as-22july06 22.96K 48.43K Autonomous Sys. 199M < 1 0.58(12) 1.00(18)
twitter 81.30K 2.68M Follower-Followee 1.8B 396 0.85(83) 1.00(26)
soc-sign-epinions 131.82K 841.37K Who-trust-whom 1.4B 242 0.71(79) 1.00(112)
coAuthorsCiteseer 227.32K 814.13K CoAuthorship 2.1B 50.1 1.00(87) 1.00(87)
citationCiteseer 268.49K 1.15M Citation 297M 3.4 0.71(10) 1.00(13)
web-NotreDame 325.72K 1.49M Web 33.9B 671 1.00(151) 1.00(155)
amazon0601 403.39K 3.38M CoPurchase 802M 23 1.00(11) 1.00(11)
web-Google 875.71K 5.10M Web 11.4B 163 1.00(46) 1.00(33)
com-youtube 1.13M 2.98M Social 451M 43 0.49(119) 0.92(24)
as-skitter 1.69M 11.09M Autonomous Sys. 1.6B 1, 036 0.53(319) 0.94(91)
wikipedia-2005 1.63M 19.75M Wikipedia Link 741B 1, 312 0.53(33) 0.82(14)
wiki-Talk 2.39M 5.02M Wikipedia User 136B 605 0.48(321) 0.59(95)
wikipedia-200609 2.98M 37.26M Wikipedia Link 2, 015B 2, 830 0.49(376) 0.62(103)
wikipedia-200611 3.14M 39.38M Wikipedia Link 2, 197B 3, 039 1.00(55) 1.00(32)

Table 1: Important statistics for the real-world graphs of different types and sizes. Largest graph in the dataset has more
than 39M edges. Times are in seconds. Density of subgraph S is |E(S)|/

(|S|
2

)
where E(S) is the set of edges internal to S.

Sizes are in number of vertices.

The storage is now at most the number of triangles, which
is manageable. The running time is basically bounded by
O(
∑
v ctr(v)d(v)). The number of triangles incident to v,

ct3(v) is cc(v)d(v)2, where cc(v) is the clustering coefficient
of v. We therefore get a running time of O(

∑
v cc(v)d(v)3).

This is significantly superlinear, but clustering coefficients
generally decay with degree [35, 40]. Overall, the imple-
mentation can be made to scale to tens of millions of edges
with little difficulty.

5. EXPERIMENTAL RESULTS
We applied our algorithm to large variety of graphs, ob-

tained from from SNAP [41] and UF Sparse Matrix Col-
lection[1]. The vital statistics of these graphs are given
in Tab. 1. All the algorithms in our framework are imple-
mented in C++ and compiled with gcc 4.8.1 at -O2 opti-
mization level. All experiments are performed on a Linux
operating system running on a machine with two Intel Xeon
E5520 2.27 GHz CPUs, with 48GB of RAM.

We computed the (r, s)-nuclei for all choices of r < s ≤
4, but do not present all results for space considerations.
We mostly observe that the forest of (3, 4)-nuclei provides
the highest quality output, both in terms of hierarchy and
density.

As mentioned earlier, we will now treat the nuclei as just
induced subgraphs of G. A nucleus can be thought of a
set of vertices, and we take all edges among these vertices
(induced subgraph) to attain the subgraph. The size of a
nucleus always refers to the number of vertices, unless oth-
erwise specified. For any set S of vertices, the density of the
induced subgraph is |E(S)|/

(|S|
2

)
, where E(S) is the set of

edges internal to S. We ignore any nucleus with less than
10 vertices. Such nuclei are not considered in any of our
results.

For the sake of demonstration, we present detailed results
on only 4 graphs (given in Tab. 1): facebook, soc-sign-

epinions, web-NotreDame, and wikipedia-200611. This
covers a variety of graphs, and other results are analogous.

5.1 The forest of nuclei
We were able to construct the forest of (3, 4)-nuclei for

all graphs in Tab. 1, but only give the forests for facebook

(Fig. 3), soc-sign-epinions (Fig. 6), and web-NotreDame

(Fig. 7). For the web-NotreDame figure, we could not present
the entire forest, so we show some trees in the forest that
had nice branching. The density is color coded, from blue
(density 0) to red (density 1). The nuclei sizes, in terms of
vertices, are coded by shape: circles correspond to at most
102 vertices, hexagons in the range [102, 103], squares in the
range [103, 104], and triangles are anything larger. The rel-
ative size of the shape, is the relative size (in that range) of
the set.

Overall, we see that the (3, 4)-nuclei provide a hierarchi-
cal representation of the dense subgraphs. The leaves are
mostly red, and their densities are almost always > 0.8.
But we obtain numerous nuclei of intermediate sizes and
densities. In the facebook forest and to some extent in the
web-NotreDame forest, we see hexagons of light blue to green
(nuclei subgraphs of > 100 vertices of densities of at least
0.2). The branching is quite prominent, and the smaller
dense nuclei tend to nest into larger, less dense nuclei. This
held in every single (3, 4)-nucleus forest we computed. This
appears to validate the intuition that real-world networks
have a hierarchical structure.

The (3.4)-nuclei figures provide a useful visualization of
the dense subgraph structure. The web-NotreDame has a
million edges, and it is not possible to see the graph as a
whole. But the forest of nuclei breaks it down into mean-
ingful parts, which can be visually inspected. The overall
forest is large (about 900 nuclei), but the nesting structure
makes it easy to absorb. We have not presented the results
here, but even the wikipedia-200611 graph of 38 million
edges has about a forest of only 4000 nuclei (which we were

Figure 6: (3, 4)-nuclei forest for soc-sign-epinions. There are 465 total nodes and 75 leaves in the forest. There is a clear
hierarchical structure of dense subgraphs. Leaves are mostly red (> 0.8 density). There are also some light blue hexagons,
representing subgraphs of size ≥ 100 vertices with density of at least 0.2.

Figure 7: Part of the (3, 4)-nuclei forest for web-NotreDame. In the entire forest, there are 2059 nodes and 812 leaves. 79 of
the leaves are clique, up to size of 155. There is a nice branching structure leading to a decent hierarchy.

a: (1, 2)-nuclei b: (1, 3)-nuclei c: (1, 4)-nuclei d: (2, 3)-nuclei e: (2, 4)-nuclei

Figure 8: (r, s)-nuclei forests for facebook when r < s ≤ 4 (Except (3, 4), which is given in Fig. 3). For r = 1, trees are more
like chains. Increasing s results in larger number of internal nodes, which are contracted in the illustrations. There is some
hierarchy observed for r = 2, but it is not as powerful as (3, 4)-nuclei, i.e., branching structure is more obvious in (3, 4)-nuclei.

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

fr
eq

ue
nc

y

density

(a) soc-sign-epinions

 0

 20

 40

 60

 80

 100

 120

 0 0.2 0.4 0.6 0.8 1

fr
eq

ue
nc

y

density

(b) web-NotreDame

 0

 50

 100

 150

 200

 250

 0 0.2 0.4 0.6 0.8 1

fr
eq

ue
nc

y

density

(c) wikipedia-200611

Figure 9: Density histograms for nuclei of three graphs. x-axis (binned) is the density and y-axis is the number of nuclei (at
least 10 vertices) with that density. Number of nuclei with the density above 0.8 is significant: 139 for soc-sign-epinions,
355 for web-NotreDame, and 1874 for wikipedia-200611. Also notice that, the mass of the histogram is shifted to right in
soc-sign-epinions and wikipedia-200611 graphs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000

ed
ge

 d
en

si
ty

number of vertices

k-3,4
LocalSearchOQC

GreedyOQC

(a) soc-sign-epinions

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000

ed
ge

 d
en

si
ty

number of vertices

k-3,4
LocalSearchOQC

GreedyOQC

(b) web-NotreDame

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000

ed
ge

 d
en

si
ty

number of vertices

k-3,4
LocalSearchOQC

GreedyOQC

(c) wikipedia-200611

Figure 10: Density vs. size plots for nuclei of three graphs. State-of-the-art algorithms are depicted with *OQC variants, and
they report one subgraph at each run. We ran them 10 times to get a general picture of the quality. Overall, (3, 4)-nuclei is
very competitive with the state-of-the-art and produces many number of subgraphs with high quality and non-trivial sizes.

able to easily visualized by a drawing tool).
Other choices of r, s for the nuclei do not lead to much

branching. We present all nucleus trees for r < s ≤ 4 for
the facebook graph in Fig. 8 (except (3, 4) which is given
in Fig. 3). Clearly, when r = 1, the nucleus decomposition
is boring. For r = 2, some structure arises, but not as
dramatic of Fig. 3. Results vary over graphs, but for r = 1,
there is pretty much just a chain of nuclei. For r = 2, some
graphs show more branching, but we consistently see that
for (3, 4)-nuclei, the forest of nuclei is always branched.

5.2 Dense subgraph discovery
We plot the density histograms of the (3, 4)-nuclei for var-

ious graphs in Fig. 9. The x-axis is (binned) density and the
y-axis is the number of nuclei (all at least 10 vertices) with
that density. It can be immediately seen that we find many
non-trivial dense subgraphs. It is surprising to note how
many near cliques (density > 0.9) we find. We tend to find
more subgraphs of high density, and other than the web-

NotreDame graph, the mass of the histogram is shifted to
the right. The number of subgraphs of density at least 0.5
is in the order of hundreds (and more than a thousand for
wikipedia-200611).

An alternate presentation of the dense subgraphs is a scat-
ter plot of all (3, 4)-nuclei with size in vertices versus den-
sity. This is given in Fig. 2 and Fig. 10, where the red dots
correspond to the nuclei. We see that dense subgraphs are
obtained in all scales of size, which is an extremely impor-
tant feature. Nuclei capture more than just the densest (or
high density) subgraphs, but find large sets of lower density
(say around 0.2). Note that 0.2 is a significant density for
sets of hundreds of vertices.

5.2.1 Comparisons with previous art
How does the quality of dense subgraphs found compare to

the state-of-the-art? In the scatter plots of Fig. 2 and Fig. 10,
we also show the output of two algorithms of [43] in green
and blue. The idea of [43] is to approximate quasi-cliques,
and their result provides two every elegant algorithms for
this process. (We collectively refer to them as OQC.) OQC
algorithms only give a single output, so we performed mul-
tiple runs to get many dense subgraphs. This is consistent
with what was done in [43]. OQC algorithms clearly beat
previous heuristics and it is fair to say that [43] is the state-
of-the-art.

The (3, 4)-nucleus decomposition does take significantly

 0

 5

 10

 15

 20

 0 2 4 6 8 10

fre
qu

en
cy

overlap size

(a) facebook

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 5 10 15 20 25

fre
qu

en
cy

overlap size

(b) soc-sign-epinions

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 5 10 15 20 25

fre
qu

en
cy

overlap size

(c) web-NotreDame

 0

 5000

 10000

 15000

 20000

 25000

 10 20 30 40 50 60

fre
qu

en
cy

overlap size

(d) wikipedia-200611

Figure 11: Histograms over non-trivial overlaps for (3, 4)-nuclei. Child-ancestor intersections are omitted. Overlap size is in
terms of the number of vertices. Most overlaps are small in size. We also observe that (2, s)-nuclei, where 2 < s, give almost
no overlaps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

de
ns

ity

density

(a) facebook

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

de
ns

ity

density

(b) soc-sign-epinions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

de
ns

ity

density

(c) web-NotreDame

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

de
ns

ity

density

(d) wikipedia-200611

Figure 12: Overlap scatter plots for (3, 4)-nuclei. Each axis shows the edge density of a participating nucleus in the pair-wise
overlap. Larger density is shown on the y-axis. (3, 4)-nuclei is able to get overlaps between very dense subgraphs, especially
in web-NotreDame and wikipedia-200611. In wikipedia-200611 graph, there are 1424 instances of pair-wise overlap between
two nuclei, where each nucleus has the density of at least 0.8.

longer that the algorithms of [43]. But we always get much
denser subgraphs in all runs. Moreover, the sizes are com-
parable if not larger than the output of [43]. Surprisingly, in
facebook and soc-sign-epinions, some of the best outputs
of OQC are very close to (3, 4)-nuclei. Arguably, the (3, 4)-
nuclei perform worst on wikipedia-200611, where OQC find
some larger and denser instances than (3, 4)-nuclei. Nonethe-
less, the smaller (3, 4)-nuclei are significantly denser. We
almost always can find fairly large cliques.

In Tab. 1, we consider the OQC output vs (3, 4)-nuclei for
all graphs. Barring 4 instances, there is a (3, 4)-nucleus that
is larger and denser than the OQC output. In all cases but
one (adjnoun), there is a (3, 4)-nucleus of density (of non-
trivial size) higher than the the OQC output. The nuclei
have the advantage of being the output of a fixed, determin-
istic procedure, and not a heuristic that may give different
outputs on different runs. We mention that OQC algorithms
have a significant running time advantage over finding (3, 4)-
nuclei, for a single subgraph finding.

5.3 Overlapping nuclei
A critical aspect of nuclei is that they can overlap. Grap-

pling with overlap is a major challenge when dealing with
graph decompositions. We believe one of the benefits of nu-
clei is that they naturally allow for (restricted) overlap. As
mentioned earlier, no two (r, s)-nuclei can contain the same
Kr. This is a significant benefit of setting r = 3, s = 4 over
other choices.

In Fig. 11, we plot the histogram over non-trivial over-
laps for (3, 4)-nuclei. (We naturally do not consider a child

nucleus intersecting with an ancestor.) For a given over-
lap size in vertices, the frequency is the number of pairs of
(3, 4)-nuclei with that overlap. This is shown for 4 different
graphs. The total number of pair-wise overlaps (the sum
of frequencies) is typically around half the total number of
(3, 4)-nuclei. We observed that the Jaccard similarities are
less than 0.1 (usually smaller). This suggest that we have
large nuclei with some overlap.

There are bioinformatics applications for finding vertices
that are present in numerous dense subgraphs [25]. The
(3, 4)-nuclei provide many such vertices. In Fig. 12, we give
a scatter plot of all intersecting nuclei, where nuclei are
indexed by density. For two intersecting nuclei of density
α > β, we put a point (α, β). We only plot pairs where the
overlap is at least 5 vertices. Especially for web-NotreDame

and wikipedia-200611, we get significant overlaps between
dense clusters.

In contrast, for all other settings of r, s, we get almost no
overlap. When r < 3, nuclei can only overlap at vertices,
and this is too stringent to allow for interesting overlap.

5.4 Runtime results
Tab. 1 presents the runtimes in seconds for the entire con-

struction. To provide some context, we describe runtimes for
varying choices of r, s. For r = 1, s = 2 (k-cores), the decom-
position is linear and extremely fast. For the largest graph
(wikipedia-200611) we have, with 39M edges, it takes only
4.26 seconds. For r = 2, s = 3 (trusses), the time can be two
orders of magnitude higher. And for (3, 4)-nuclei, it is an ad-
ditional order of magnitude higher. Nonetheless, our most

expensive run took less than an hour on the wikipedia-

200611 graph, and the final decomposition is quite insight-
ful. It provides about 6000 nuclei with more than 10 vertices,
most of them of have density of at least 0.4. The algorithms
of [43] take roughly a minute for wikipedia-200611 to pro-
duce only one dense subgraph.

The theoretical running time analysis of Thm. 2 gives a
running time bound of

∑
v c3(v)d(v). In Tab. 1, we show this

value for the various graphs. In general, we note that this
value roughly correlates with the running time. For graphs
where the running time is in many minutes, this quantity is
always in the billions. For the large wiki graphs where the
(3, 4)-nucleus decomposition is most expensive, this is in the
trillions.

6. FURTHER DIRECTIONS
The most important direction is in the applications of nu-

cleus decompositions. We are currently investigating bioin-
formatics applications, specifically protein-protein and protein-
gene interaction networks. Biologists often want a global
view of the dense substructures, and we believe the (3, 4)-
nuclei could be extremely useful here. In our preliminary
analyses, we wish to see if the nuclei pick out specific func-
tional units. If so, that would provide strong validation of
dense subgraph analyses for bioinformatics.

It is natural to try even larger values of r, s. Prelimi-
nary experimentation suggested that this gave little benefit
in either the forest or the density of nuclei. Also, the cost
of clique enumeration becomes forbiddingly large. It would
be nice to argue that r = 3, s = 4 is a sort of sweet spot
for nucleus decompositions. Previous theoretical work sug-
gests that any graph with a sufficient triangle count undergo
special “community-like” decompositions [23]. That might
provide evidence to why triangle based nuclei are enough.

A faster algorithm for the (3, 4)-nuclei is desirable. Clique
enumeration is a well-studied problem [7], and we hope tech-
niques from these results may provide ideas here. Of course,
as we said earlier, any method based on storing K4s is in-
feasible (space-wise). We hope to devise a clever algorithm
or data structure that quickly determines the K4s a triangle
participates in.

Last but not least, we seek for incremental algorithms to
maintain the (r, s)-nuclei for a stream of edges. There are
existing techniques for streaming k-core algorithms [36] and
we believe that similar methods can be adapted for (r, s)-
nuclei maintenance.

7. ACKNOWLEDGEMENTS
We are grateful to Charalampos Tsourakakis for sharing

his code base for [43]. This work was funded by the DARPA
GRAPHS program. Sandia National Laboratories is a multi-
program laboratory managed and operated by Sandia Cor-
poration, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-
94AL85000.

8. REFERENCES
[1] University of florida sparse matrix collection. http:

//www.cise.ufl.edu/research/sparse/matrices/.

[2] J. I. Alvarez-Hamelin, A. Barrat, and A. Vespignani.
Large scale networks fingerprinting and visualization

using the k-core decomposition. In Advances in Neural
Information Processing Systems 18, pages 41–50. MIT
Press, 2006.

[3] R. Andersen and K. Chellapilla. Finding dense
subgraphs with size bounds. In Workshop on
Algorithms and Models for the Web-Graph (WAW),
pages 25–37, 2009.

[4] A. Angel, N. Sarkas, N. Koudas, and D. Srivastava.
Dense subgraph maintenance under streaming edge
weight updates for real-time story identification. Proc.
VLDB Endow., 5(6):574–585, Feb. 2012.

[5] Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama.
Greedily finding a dense subgraph. J. Algorithms,
34(2):203–221, Feb. 2000.

[6] D. J. Beal, R. Cohen, M. J. Burke, and C. L.
McLendon. Cohesion and performance in groups: A
meta-analytic clarification of construct relation.
Journal of Applied Psychology, 88:989–1004, 2003.

[7] C. Bron and J. Kerbosch. Algorithm 457: Finding all
cliques of an undirected graph. Commun. ACM,
16(9):575–577, Sept. 1973.

[8] G. Buehrer and K. Chellapilla. A scalable pattern
mining approach to web graph compression with
communities. In Proceedings of the 2008 International
Conference on Web Search and Data Mining, WSDM
’08, pages 95–106, New York, NY, USA, 2008. ACM.

[9] M. Charikar. Greedy approximation algorithms for
finding dense components in a graph. In Proceedings of
the Third International Workshop on Approximation
Algorithms for Combinatorial Optimization, APPROX
’00, pages 84–95, London, UK, UK, 2000.
Springer-Verlag.

[10] N. Chiba and T. Nishizeki. Arboricity and subgraph
listing algorithms. SIAM J. Comput., 14:210–223,
February 1985.

[11] J. Cohen. Trusses: Cohesive subgraphs for social
network analysis. Natioanal Security Agency Technical
Report, 2008.

[12] J. Cohen. Graph twiddling in a MapReduce world.
Computing in Science & Engineering, 11:29–41, 2009.

[13] Y. Dourisboure, F. Geraci, and M. Pellegrini.
Extraction and classification of dense communities in
the web. In Proceedings of the 16th International
Conference on World Wide Web, WWW ’07, pages
461–470, New York, NY, USA, 2007. ACM.

[14] X. Du, R. Jin, L. Ding, V. E. Lee, and J. H. T. Jr.
Migration motif: a spatial - temporal pattern mining
approach for financial markets. In J. F. E. IV,
F. Fogelman-SouliŐ, P. A. Flach, and M. Zaki,
editors, KDD, pages 1135–1144. ACM, 2009.

[15] P. Erdős and A. Hajnal. On chromatic number of
graphs and set-systems. Acta Mathematica Hungarica,
17:61–99, 1966.

[16] U. Feige. Relations between average case complexity
and approximation complexity. In Proceedings of
Symposium on Theory of Computing, pages 534–543,
2002.

[17] D. R. Forsyth. Group Dynamics. Cengage Learning,
2010.

[18] E. Fratkin, B. T. Naughton, D. L. Brutlag, and
S. Batzoglou. Motifcut: regulatory motifs finding with

http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/

maximum density subgraphs. In ISMB (Supplement of
Bioinformatics), pages 156–157, 2006.

[19] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast
parametric maximum flow algorithm and applications.
SIAM J. Comput., 18(1):30–55, Feb. 1989.

[20] D. Gibson, R. Kumar, and A. Tomkins. Discovering
large dense subgraphs in massive graphs. In
Proceedings of the 31st International Conference on
Very Large Data Bases, VLDB ’05, pages 721–732.
VLDB Endowment, 2005.

[21] A. Gionis, F. Junqueira, V. Leroy, M. Serafini, and
I. Weber. Piggybacking on social networks. Proc.
VLDB Endow., 6(6):409–420, Apr. 2013.

[22] A. V. Goldberg. Finding a maximum density
subgraph. Technical report, Berkeley, CA, USA, 1984.

[23] R. Gupta, T. Roughgarden, and C. Seshadhri.
Decompositions of triangle-dense graphs. In
Innovations in Theoretical Computer Science (ITCS),
pages 471–482, 2014.

[24] J. H̊astad. Clique is hard to approximate within

n(1−ε). In Acta Mathematica, pages 627–636, 1996.

[25] H. Hu, X. Yan, Y. Huang, J. Han, and X. J. Zhou.
Mining coherent dense subgraphs across massive
biological networks for functional discovery.
Bioinformatics, 21(1):213–221, Jan. 2005.

[26] L. Iasemidis, D.-S. Shiau, W. Chaovalitwongse,
J. Sackellares, P. Pardalos, J. Principe, P. Carney,
A. Prasad, B. Veeramani, and K. Tsakalis. Adaptive
epileptic seizure prediction system. Biomedical
Engineering, IEEE Transactions on, 50(5):616–627,
May 2003.

[27] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a
high-compression indexing scheme for reachability
query. In U. Ćetintemel, S. B. Zdonik, D. Kossmann,
and N. Tatbul, editors, SIGMOD Conference, pages
813–826. ACM, 2009.

[28] S. Khot. Ruling out ptas for graph min-bisection,
dense k-subgraph, and bipartite clique. SIAM Journal
on Computing, 36(4):1025–1071, 2006.

[29] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Trawling the web for emerging
cyber-communities. In Proceedings of the Eighth
International Conference on World Wide Web, WWW
’99, pages 1481–1493, New York, NY, USA, 1999.
Elsevier North-Holland, Inc.

[30] V. E. Lee, N. Ruan, R. Jin, and C. C. Aggarwal. A
survey of algorithms for dense subgraph discovery. In
C. C. Aggarwal and H. Wang, editors, Managing and
Mining Graph Data, volume 40 of Advances in
Database Systems, pages 303–336. Springer, 2010.

[31] D. Lick and A. White. k-degenerate graphs. Canadian
Journal of Mathematics, 22:1082–1096, 1970.

[32] D. Matula and L. Beck. Smallest-last ordering and
clustering and graph coloring algorithms. Journal of
ACM, 30(3):417–427, 1983.

[33] R. Mokken. Cliques, clubs and clans. Quality and
Quantity, 13(2):161–173, 1979.

[34] R. A. Rossi, D. F. Gleich, A. H. Gebremedhin, and
M. M. A. Patwary. A fast parallel maximum clique
algorithm for large sparse graphs and temporal strong
components. CoRR, abs/1302.6256, 2013.

[35] A. Sala, L. Cao, C. Wilson, R. Zablit, H. Zheng, and
B. Y. Zhao. Measurement-calibrated graph models for
social network experiments. In WWW ’10, pages
861–870. ACM, 2010.

[36] A. E. Sarıyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu,
and Ü. V. Çatalyürek. Streaming algorithms for k-core
decomposition. In 39th International Conference on
Very Large Data Bases (VLDB), Aug 2013.

[37] T. Schank and D. Wagner. Finding, counting and
listing all triangles in large graphs, an experimental
study. In Experimental and Efficient Algorithms, pages
606–609. Springer Berlin / Heidelberg, 2005.

[38] S. B. Seidman. Network structure and minimum
degree. Social Networks, 5(3):269–287, 1983.

[39] S. B. Seidman and B. Foster. A graph-theoretic
generalization of the clique concept. Journal of
Mathematical Sociology, 1978.

[40] C. Seshadhri, A. Pinar, and T. G. Kolda. Triadic
measures on graphs: The power of wedge sampling.
Statistical Analysis and Data Mining, 7(4):294–307,
2014.

[41] SNAP. Stanford network analysis package.
http://snap.stanford.edu/snap, retrieved March, 2014.

[42] S. Suri and S. Vassilvitskii. Counting triangles and the
curse of the last reducer. In WWW’11, pages 607–614,
2011.

[43] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and
M. Tsiarli. Denser than the densest subgraph:
Extracting optimal quasi-cliques with quality
guarantees. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’13, pages 104–112, New York,
NY, USA, 2013. ACM.

[44] C. E. Tsourakakis. A novel approach to finding
near-cliques: The triangle-densest subgraph problem.
CoRR, abs/1405.1477, 2014.

[45] J. Wang and J. Cheng. Truss decomposition in
massive networks. Proceedings of the VLDB
Endowment, 5(9):812–823, 2012.

[46] N. Wang, J. Zhang, K.-L. Tan, and A. K. H. Tung. On
triangulation-based dense neighborhood graph
discovery. Proc. VLDB Endow., 4(2):58–68, Nov. 2010.

[47] S. Wasserman and K. Faust. Social Network Analysis:
Methods and Applications. Cambridge University
Press, 1994.

[48] D. Watts and S. Strogatz. Collective dynamics of
‘small-world’ networks. Nature, 393:440–442, 1998.

[49] B. Zhang and S. Horvath. A general framework for
weighted gene co-expression network analysis.
Statistical Applications in Genetics and Molecular
Biology, 4(1):Article 17+, 2005.

[50] Y. Zhang and S. Parthasarathy. Extracting analyzing
and visualizing triangle k-core motifs within networks.
In Proceedings of the 2012 IEEE 28th International
Conference on Data Engineering, ICDE ’12, pages
1049–1060, Washington, DC, USA, 2012. IEEE
Computer Society.

[51] F. Zhao and A. K. H. Tung. Large scale cohesive
subgraphs discovery for social network visual analysis.
In Proceedings of the 39th international conference on
Very Large Data Bases, PVLDB’13, pages 85–96.

VLDB Endowment, 2013.

	Introduction
	The challenges of dense subgraphs
	Our results

	Previous work
	Nucleus decomposition
	Generating nucleus decompositions
	Bounding the complexity

	Experimental Results
	The forest of nuclei
	Dense subgraph discovery
	Comparisons with previous art

	Overlapping nuclei
	Runtime results

	Further directions
	Acknowledgements
	References

